Wednesday, 13 May 2015

4.1.6  Sudden Pressure Relay.  Internal arcing in an oil-filled power transformer can instantly vaporize surrounding oil, generating gas pressures that can cause catastrophic failure, rupture the tank, and spread flaming oil over a large area.  This can damage or destroy other equipment in addition to the transformer and presents extreme hazards to workers.
The relay is designed to detect a sudden pressure increase caused by arcing.  It is set to operate before the pressure relief device.  The control circuit should de- energize the transformer and provide an alarm.  The relay will ignore normal pressure changes such as oil-pump surges, temperature changes, etc.  
Modern sudden pressure relays consist of three bellows (see figure 4) with silicone sealed inside.  Changes in pressure in the transformer deflect the main sensing bellows.  Silicone inside acts on two control bellows arranged like a balance beam, one on each side.  One bellows senses pressure changes through a small orifice. The opening is automatically changed by a bimetallic strip to adjust for normal temperature changes of the oil. The orifice delays pressure changes in this bellows.  The other bellows responds to immediate pressure changes and is affected much more quickly.  Pressure difference tilts the balance beam and activates the switch. This type relay automatically resets
when the two bellows again reach pressure equilibrium. If this relay operates, do not re-energize the transformer until you have determined the exact cause and corrected the problem. 
Old style sudden pressure relays have only one bellows. A sudden excessive pressure within the transformer tank exerts pressure directly on the bellows, which moves a spring-loaded operating pin. The pin operates a switch which provides alarm and breaker trip. After the relay has operated, the cap must be removed and the switch reset to normal by depressing the reset button. 
Once every 3 to 5 years, the sudden pressure relay should be tested according to manufacturer’s instructions. Generally, only a squeeze-bulb and pressure gage (5 psi) are required. Disconnect the tripping circuit and use an ohmmeter to test for relay operation. Test the alarm circuit and verify that the correct alarm point is activated. Use an ohmmeter to verify the trip signal is activated or, if possible, apply only control voltage to the breaker and make sure the tripping function operates. Consult the manufacturer’s manual for your specific transformer for detailed instructions. 
4.1.7 Buchholz Relay (found only on transformers with conservators). The Buchholz relay has two oil-filled chambers with floats and relays arranged vertically one over the other. If high eddy currents, local overheating, or partial discharges occur within the tank, bubbles of resultant gas rise to the top of the tank. These rise through the pipe between the tank and the conservator. As gas bubbles migrate along the pipe, they enter the Buchholz relay and rise into the top chamber. As gas builds up inside the chamber, it displaces the oil, decreasing the level. The top float descends with oil level until it passes a magnetic switch which activates an alarm. The bottom float and relay cannot be activated by additional gas buildup. The float is located slightly below the top of the pipe so that once the top chamber is filled, additional gas goes into the pipe and on up to the conservator. Typically, inspection windows are provided so that the amount of gas and relay operation may be viewed during testing. If the oil level falls low enough (conservator empty), switch contacts in the bottom chamber are activated by the bottom  
float. These contacts are typically connected to cause the transformer to trip. This relay also serves a third function, similar to the sudden pressure relay. A magnetically held paddle attached to the bottom float is positioned in the oil-flow stream between the conservator and transformer tank. Normal flows resulting from temperature changes are small and bypass below the paddle. If a fault occurs in the transformer, a pressure wave (surge) is created in the oil. This surge travels through the pipe and displaces the paddle. The paddle activates the same magnetic switch as the bottom float mentioned above, tripping the transformer. The flow rate at which the paddle activates the relay is normally adjustable. See your specific transformer instruction manual for details. 
Once every 3 to 5 years while the transformer is de-energized, functionally test the Buchhholz relay by pumping a small amount of air into the top chamber with a squeeze bulb hand pump. Watch the float operation through the window. Check to make sure the correct alarm point has been activated. Open the bleed valve and vent air from the chamber. The bottom float and switching cannot be tested with air pressure. On some relays, a rod is provided so that you can test both bottom and top sections by pushing the floats down until the trip points are activated. If possible, verify that the breaker will trip with this operation. A volt- ohmmeter may also be used to check the switches. If these contacts activate during operation, it means that the oil level is very low, or a pressure wave has activated (bottom contacts), or the transformer is gassing (top contacts). If this relay operates, do not re-energize the transformer until you have determined the exact cause. 
4.1.8 Transformer Bushings: Testing and Maintenance of High-Voltage Bushings. When bushings are new, they should be Double tested as an acceptance test. Refer to the M4000 Double test set instructions, the Double Bushing Field Test Guide [8], and the manufacturer’s data for guidance on acceptable results. 
Caution: Do not test a bushing while it’s in its wood shipping crate, or while it is lying on wood. Wood is not as good an insulator as porcelain and will cause the readings to be inaccurate. Keep the test results as a baseline record to compare with future tests. 
After 1 month of service and yearly, check the external porcelain for cracks and/or contamination (requires binoculars). There is no “perfect insulator”; a small amount of leakage current always exists. This current “leaks” through and along the bushing surface from the high-voltage conductor to ground. If the bushing is damaged or heavily contaminated, leakage current becomes excessive, and visible evidence may appear as carbon tracking (treeing) on the bushing surface. Flashovers may occur if the bushings are not cleaned periodically. 
Look carefully for oil leaks. Check the bushing oil level by viewing the oil-sight glass or the oil level gage. When the bushing has a gauge with a pointer, look carefully, because the oil level should vary a little with temperature changes. If the pointer never changes, even with wide ambient temperature and load changes, 
18

the gage should be checked at the next outage. A stuck gauge pointer coupled with a small oil leak can cause explosive failure of a bushing, damaging the transformer and other switchyard equipment. A costly extended outage is the result. 
If the oil level is low and there is an external oil leak, check the bolts for proper torque and the gasket for proper compression. If torque and compression are correct, the bushing must be replaced with a spare. Follow instructions in the transformer manual carefully. It is very important that the correct type gasket be installed and the correct compression be applied. A leaky gasket is probably also leaking water and air into the transformer, so check the most recent transformer DGA for high moisture and oxygen. 
If the oil level is low and there is no visible external leak, there may be an internal leak around the lower seal into the transformer tank. If possible, re-fill the bushing with the same oil and carefully monitor the level and the volume it takes to fill the bushing to the proper level. If it takes more than one quart, make plans to replace the bushing. The bushing must be sent to the factory for repair or it must be junked; it cannot be repaired in the field. 
Caution: Never open the fill plug of any bushing if it is at an elevated temperature. Some bushings have a nitrogen blanket on top of the oil, which pressurizes as the oil expands. Always consult the manufacturer’s instruction manual which will give the temperature range at which the bushing may be safely opened. Generally, this will be between 15 °C (59 °F ) and 35 °C (95 °F). Pressurized hot oil may suddenly gush from the fill plug if it is removed while at elevated temperature, causing burn hazards. Generally, the bushing will be a little cooler than the top oil temperature, so this temperature gage may be used as a guide if the gage has been tested as mentioned in 4.1.3. 
About 90% of all preventable bushing failures are caused by moisture entering through leaky gaskets, cracks, or seals. Internal moisture can be detected by Doble testing. See FIST 3-2 [9] and Doble Bushing Field Test Guide [8] for troubles and corrective actions. Internal moisture causes deterioration of the insulation of the bushing and can result in explosive failure, causing extensive transformer and other equipment damage, as well as hazards to workers. 
After 1 month of service and yearly, examine the bushings with an IR camera [4,7]; if one phase shows a markedly higher temperature, there is probably a bad connection. The connection at the top is usually the poor one; however, a bad connection inside the transformer tank will usually show a higher temperature at the top as well. In addition, a bad connection inside the transformer will usually show hot metal gases (ethane and ethylene) in the DGA. 
Once every 3 to 5 years, a close physical inspection and cleaning should be done [9]. Check carefully for leaks, cracks, and carbon tracking. This inspection will be required more often in atmospheres where salts and dust deposits appear on the 
19

bushings. In conditions that produce deposits, a light application of Dow Corning grease DC-5 or GE Insulgel will help reduce risk of external flashover. The downside of this treatment is that a grease buildup may occur. In high humidity and wet areas, a better choice may be a high quality silicone paste wax applied to the porcelain, which will reduce the risk of flashover. A spray-on wax containing silicone, such as Turtle Wax brand, has been found to be very useful for cleaning and waxing in one operation, providing the deposits are not too hard. Wax will cause water to form beads rather than a continuous sheet, which reduces flashover risk. Cleaning may involve just spraying with Turtle Wax and wiping with a soft cloth. A lime removal product, such as “Lime Away,” also may be useful. More stubborn contaminates may require solvents, steel wool, and brushes. A high pressure water stream may be required to remove salt and other water soluble deposits. Limestone powder blasting with dry air will safely remove metallic oxides, chemicals, salt-cake, and almost any hard contaminate. Other materials, such as potters clay, walnut or pecan shells, or crushed coconut shells, are also used for hard contaminates. Carbon dioxide (CO2) pellet blasting is more expensive but virtually eliminates cleanup because it evaporates. Ground up corn-cob blasting will remove soft pollutants such as old coatings of built-up grease. A competent experienced contractor should be employed and a thorough written job hazard analysis (JHA) performed when any of these treatments are used. 
Corona (air ionization) may be visible at tops of bushings at twilight or night, especially during periods of rain, mist, fog, or high humidity. At the top, corona is considered normal; however, as a bushing becomes more and more contaminated, corona will creep lower and lower. If the bushing is not cleaned, flashover will occur when corona nears the grounded transformer top. If corona seems to be lower than the top of the bushing, inspect, Double test, and clean the bushing as quickly as possible. If flashover occurs (phase to ground fault), it could destroy the bushing and cause an extended outage. Line-to-line faults also can occur if all the bushings are contaminated and flashover occurs. A corona scope may be used to view and photograph low levels of corona indoors under normal illumination and outdoors at twilight or night. High levels of corona may possibly be viewed outdoors in the daytime if a dark background is available, such as trees, canyon walls, buildings, etc. The corona scope design is primarily for indoor and night time use; it cannot be used with blue or cloudy sky background. This technology is available at the Technical Service Center (TSC), D-8450. 
Caution: See the transformer manual for detailed instructions on cleaning and repairing your specific bushing surfaces. Different solvents, wiping materials, and cleaning methods may be required for different bushings. Different repair techniques may also be required for small cracks and chips. Generally, glyptal or insulating varnish will repair small scratches, hairline cracks, and chips. Sharp edges of a chip should be honed smooth, and the defective area painted with insulating varnish to provide a glossy finish. Hairline cracks in the surface of the porcelain must be sealed because accumulated dirt and moisture in the crack may result in flashover. Epoxy should be used to repair larger chips. If a bushing 
20

insulator has a large chip that reduces the flashover distance or has a large crack totally through the insulator, the bushing must be replaced. Some manufacturers offer repair service to damaged bushings that cannot be repaired in the field. Contact the manufacturer for your particular bushings if you have repair questions. 
Once every 3 to 5 years, depending on the atmosphere and service conditions, the bushings should be Double tested. Refer to Double M-4000 test set instructions, Double Bushing Field Test Guide [8], FIST 3-2, [9] and the manufacturer’s instructions for proper values and test procedures. Bushings should be cleaned prior to Double testing. Contamination on the insulating surface will cause the results to be inaccurate. Testing may also be done before and after cleaning to check methods of cleaning. As the bushings age and begin to deteriorate, reduce the testing interval to 1 year. Keep accurate records of results so that replacements can be ordered in advance, before you have to remove bushings from service. 

No comments:

Post a Comment